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Abstract

We provide an in-depth study of the security of click-based graphical password schemes like PassPoints
(Weidenbeck et al., 2005), by exploring popular points (hot-spots), and examining strategies to predict
and exploit them in guessing attacks. We report on both short- and long-term user studies: one lab-
controlled, involving 43 users and 17 diverse images, the other a ï¿‰eld test of 223 user accounts. We
provide empirical evidence that hot-spots do exist for many images, some more so than others. We
explore the use of ï¿‰human-computationï¿‰ (in this context, harvesting click-points from a small set of
users) to predict these hot-spots. We generate two ï¿‰human-seededï¿‰ attacks based on this method: one
based on a ï¿‰rst-order Markov model, another based on an independent probability model. Within 100
guesses, our ï¿‰rst-order Markov model-based attack ï¿‰nds 4% of passwords in one imageï¿‰s data set, and
10% of passwords in a second imageï¿‰s data set. Our independent model-based attack ï¿‰nds 20% within
233 guesses in one imageï¿‰s data set and 36% within 2 31 guesses in a second imageï¿‰s data set. These are
all for a system whose full password space has cardinality 243. We also evaluate our ï¿‰rst-order Markov
model-based attack with cross-validation of the ï¿‰eld study data, which ï¿‰nds an average of 7-10% of user
passwords within 3 guesses. We also begin to explore some click-order pattern attacks, which we found
improve on our independent model-based attacks. Our results suggest that these graphical password
schemes (with parameters as originally proposed) are vulnerable to offline and online attacks, even on
systems that implement conservative lock-out policies.

1 Introduction

Traditional text-based authentication suffers from a well-known limitation: many users tend to choose pass-
words that have predictable patterns, allowing for successful guessing attacks. As an alternative, graphical
passwords require a user to remember an image (or parts of an image) in place of a word. They have
been largely motivated by the well-known fact that people remember images better than words [26], and
implied promises that the password spaces of various image-based schemes are not only sufficiently large to
resist guessing attacks, but that the effective password spaces (from which users actually choose) are also
sufficiently large. The latter, however, is not well established.

Many different types of graphical passwords have been proposed to date; among the more popular ap-
proaches in the literature is PassPoints [47, 46, 45, 1, 13]. It and other click-based graphical password
schemes [2, 22, 38, 9, 5] require users to click on a sequence of points on one or more background images.
PassPoints usability studies have been performed to determine the optimal amount of error tolerance based
on click-point accuracy [46, 8], login and creation times, login error rates, memorability, and general percep-
tion [46, 47, 8]. An important remaining question for such schemes is: how secure are they? This issue has
previously remained largely unaddressed, despite speculation that the security of these schemes likely suffers
from hot-spots ï¿‰ areas of an image that are more probable than others for users to click.

The issue of whether hot-spots exist is tightly related to that of the security; if commonly preferred points
exist, then they could be exploited in a number of ways. We conï¿‰rm the existence of hot-spots, and show
that some images are more susceptible to hot-spotting than others. Our work involves two user studies.
The ï¿‰rst (lab) study used 17 diverse images. In the second (ï¿‰eld) study, involving 223 user accounts over a
minimum of seven weeks, we explored two of these images in greater depth. We analyzed our lab study data
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using estimates of formal measures of security to make an informed decision of which two images to use in
the ï¿‰eld study.

We explore how an attacker might predict the hot-spots we observed for use in an offline dictionary attack.
Rather than using image processing to predict hot-spots (see discussion under Related Work), we instead
use ï¿‰human computationï¿‰ [44], which relies on people to perform tasks that computers (at least currently)
ï¿‰nd difficult. Human-computation can produce a human-computed data set ; our human-computed data set
is our lab study data set, which effectively indexes the click-points that people would initially choose as part
of a password. We process this data set to determine a set of points that are more commonly preferred, to
create a human-seeded attack. A human-seeded attack can be generally deï¿‰ned as an attack generated by
using data collected from people.

We create three different predictive graphical dictionaries [31] (i.e., based on available information related
to the userï¿‰s login task, gathered from sources outside of the target password database itself, where a target
password database is the set of user passwords under attack): two based on different styles of human-seeded
attacks, and another based on click-order patterns. We evaluate these dictionaries, and also combined
human-seeded and click-order pattern attacks, using our ï¿‰eld study data set. We also perform a 10-fold
cross-validation analysis with our ï¿‰eld study database to train and test one style of human-seeded attack
(based on a ï¿‰rst-order Markov model), providing a sense of how well an attacker might do with these methods
and an ideal human-computed data set for training.

Our contributions include an in-depth study of hot-spots in click-based (and cued-recall) graphical pass-
word schemes, and the impact of these hot-spots on security through two separate user studies. We ex-
plore predictive methods of generating attack dictionaries for click-based graphical passwords. Perhaps our
most interesting contribution is proposing and exploring the use of human-computation to create graphical
dictionaries; we conjecture that this method is generalizable to other types of graphical passwords (e.g.,
recognition-based) where users are given free choice.

The remainder of this paper proceeds as follows. Section 2 presents relevant background and terminology.
Section 3 describes our user studies and hot-spot analysis. Section 4 describes algorithms and methods for
creating predictive attacks. Section 5 presents results for all attacks examined herein. Section 6 discusses
related work, and we conclude with Section 7.

2 Background and Terminology

Click-based graphical passwords require users to log in by clicking a sequence of points on one or more
background images. Many variations are possible (see Section 6), depending on the number of images and
what points a user is allowed to select. We study click-based graphical passwords by allowing clicks anywhere
on a single image (i.e., PassPoints-style). To allow password veriï¿‰cation, user-entered passwords must be
encoded in some standard format to allow veriï¿‰cation. Assuming that the enc oding (e.g. robust discretization
[1] or centered discretization[7]) is followed by some form of hashing to preclude trivial attacks, offline attacks
[7] are still possible if hashed values are intercepted by an attacker and can be used as veriï¿‰able text, or if
the attacker obtains a ï¿‰le of system-side veriï¿‰cation values.

We use the following terminology. Assume a user chooses a given click-point c as part of his or her
password. The tolerable error or tolerance t is the error (in pixels) allowed for a click-point entered on a
subsequent login to be accepted as c. This deï¿‰nes a tolerance region (T-region) centered on c, which for
our experimental implementation using t = 9 pixels, is a 19 ï¿‰ 19 pixel square. A cluster is a set of one or
more click-points that lie within a T-region. Note that clusters arise when the data from multiple users is
combined, rather than a single user clicking multiple times in the same area. Our algorithm for computing
clusters is described in Section 3.2.1. The number of click-points falling within a cluster is its size. A
hot-spot is indicated by a cluster that is larger than expected by random choice, in an experiment which
produces click-points across a set of T-regions. To aid visualization and indicate relative sizes for clusters
of size at least two, on ï¿‰gures we sometimes represent the underlying cluster by a shaded circle or halo
with halo diameter proportional to its size (similar to population density diagrams). An alphabet is a set of
distinct T-regions; our experimental implementation, using 451 ï¿‰ 331 pixel images, results in an alphabet of
at least m = 414 non-overlapping T-regions. Using passwords composed of 5-clicks on an alphabet of size
414 provides the system with only 243 entries in the full theoretical password space; however, increasing the
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number of clicks, size of the image, and/or decreasing the tolerance square size would allow for comparable
security to traditional text passwords. We study an implementation with these particular parameters as they
are close to those used in other studies [45, 47] that show them to have acceptable usability.

3 User Studies

As mentioned, we conducted two user studies: a single session lab study with 43 users and 17 images, and a
long-term ï¿‰eld study with 223 user accounts and two images. We use the lab study data as an indicator of
the degree of hot-spotting for each image, and as our human-computed data set. We use the ï¿‰eld study data
to test our attacks. Further details of the lab and ï¿‰eld studies are in Section 3.1, the hot-spotting results in
Section 3.2, and the user studiesï¿‰ limitations are discussed in Section 3.3.

3.1 Experimental Methodology

We report on the methodology for the short-term lab study in Section 3.1.1 and the long-term ï¿‰eld study in
Section 3.1.2.

3.1.1 Lab Study

Here we report the details of a university-approved 43-user study of click-based graphical passwords in
a controlled lab environment. Each user session was conducted individually and lasted about one hour.
Participants were all university students who were not studying (or experts in) computer security. Each user
was asked to create a click-based graphical password on 17 different images (most of these are reproduced
in Figures 1 and 11; others are available upon request). Four of the images are from a previous click-based
graphical password study by Wiedenbeck et al. [46]; the other 13 were selected to provide a range of values
based on two image processing measures that we expected to reï¿‰ect the amount of detail: the number of
segments found from image segmentation [14] and the number of corners found from corner detection [19].
Seven of the 13 images were chosen to be those we ï¿‰intuitivelyï¿‰ believed would encourage fewer hot-spots;
this is in addition to the four chosen in earlier research by others [46] using intuition (no further details were
provided on their image selection methodology).

We implemented a browser-based lab tool for this study. Each user was provided a brief explanation of
what click-based graphical passwords are, and given two images to practice creating and conï¿‰rming such
passwords. To keep the parameters as consistent as possible with previous usability experiments1 of such
passwords [47], we used 5 click-points for each password, an image size of 451 ï¿‰ 331 pixels, and a 19 ï¿‰ 19 pixel
square of error tolerance. Wiedenbeck et al. [47] used a tolerance of 20 ï¿‰ 20, allowing 10 pixels of tolerated
error on one side and 9 on the other. For consistent error tolerance on all sides, we approximate this using
19 ï¿‰ 19. Users were instructed to choose a password by clicking on 5 points, with no two the same. Although
the software did not enforce this condition, subsequent analysis showed that the effect on the resulting cluster
sizes was negligible for all images except pcb. For pcb, considering all click-points produced 6 clusters of size
≥ 5, but counting at most one click from each user produced 3 clusters of size ≥ 5. We did not assume
a speciï¿‰c encoding scheme (e.g., robust discretization [1] or other grid-based methods [7]); the concept of
hot-spots and user choice of click-points is general enough to apply across all encoding schemes. To allow
for detailed analysis, we stored and compared the actual click-points.

Once users had a chance to practice a few passwords, the main part of the lab experiment began. For
each image, users were asked to create a click-based graphical password that they could remember but that
others will not be able to guess, and to pretend that it is protecting their bank information. After initial
creation, users were asked to conï¿‰rm their password to ensure they could repeat their click-points. On
successful conï¿‰rmation, users were given 3D mental rotation tasks [33] as a distractor for at least 30 seconds
(to remove the password from their visual working memory, and thus simulate the effect of the passage of
time). After this period of memory tasks, users were provided the image again and asked to log in using
their previously selected password. If users could not conï¿‰rm after two failed attempts during password
creation/conï¿‰rmation or log in after one failed attempt, they were permitted to reset their password for that

1The usability aspects of this study are reported separately [8].
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image and try again. If users did not like the image and felt they could not create and remember a password
on it, they were permitted to skip the image. Only two of the 17 images had a signiï¿‰cant number of skips:
paperclips and bee. This suggests some passwords for these images were not repeatable, and we suspect our
results for these images would show lower relative security in practice.

To avoid any dependence on the order of images presented, each user was presented a random (but
unique from other users) shuffled ordering of the 17 images used. Since most users did not make it through
all 17 images, the number of graphical passwords created per image ranged from 32 to 40, for the 43 users.
Two users had an inaccurate mouse, but we do not expect this to affect our present focus ï¿‰ the location of
selected click-points. This short-term lab study was intended to collect data on initial user choice; although
the mental rotation tasks work to remove the password from working memory, this study does not account
for any effect caused by password resets over time due to forgotten passwords. For this reason, we use the
long-term ï¿‰eld study (Section 3.1.2 ) which does account for this effect, as the primary data set for testing
the success of our attack dictionaries.

3.1.2 Field Study

Here we describe a university-approved ï¿‰eld study of 223 user accounts on two different background images.
We collected click-based graphical password data to evaluate the security of this style of graphical passwords
against various attacks. We used the entropy and expected guesses measures from our lab study to choose
two images that would apparently offer different levels of security (although both are highly detailed): pool
and cars (see Figure 1). The lab study showed that of the images used in previous studies [46], the pool
image had the closest to a middle ranking in terms of the amount of clustering (see Section 3.2.2). The
lab study also showed that the cars image had nearly the least amount of clustering among the 17 images
tested. Both images had a low number of skips in the lab study, indicating that they did not cause problems
for users with password creation. We chose the pool image so we had an image from previous studies and
also had an amount of clustering that was not extremely high or low (it was closest to the middle rank of
the images examined). We chose the cars image to give this scheme the best chance we could in terms of
anticipated security.

(a) cars (originally from [4]). (b) pool (originally from [46, 47]).

Figure 1: Images used in lab study.

Our web-based implementation of PassPoints was used by three ï¿‰rst-year undergraduate classes: two
ï¿‰rst year courses for computer science students, and a ï¿‰rst year course for non-computer science students
enrolled in a science degree. The students used the system for at least 7 weeks to gain access to their course
notes, tutorials, and assignment solutions. For comparison with previous usability studies, and our lab study,
we used an image size of 451 ï¿‰ 331 pixels. After the user entered their username and course, the screen
displayed their background image and a small black square above the image to indicate their tolerance square
size. For about half of users (for each image), a 19 ï¿‰ 19 T-region was used, and for the other half, a 13 ï¿‰ 13
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T-region.2 The system enforced that each password had 5 clicks and that no click-point was within t = 9
pixels of another (vertically and horizontally). Each user was assigned an image at random. To complete
initial password creation, users had to successfully conï¿‰rm their password once. After initial creation, users
were permitted to reset their password at any time using a previously set secret question and answer.

Users were permitted to login from any machine (home, school, or other), and were provided an online
FAQ and help. The users were asked that they keep in mind that their click-points are a password, and that
while they will need to pick points they can remember, they should not pick points that someone else will be
able to guess. Each class was also provided a brief overview of the system, explaining that their click-points
in subsequent logins must be within the tolerance shown by a small square above the background image,
and that the input order matters. In order to have some conï¿‰dence that the passwords we analyze have
some degree of memorability, we only use the ï¿‰nal passwords created by each user that were demonstrated
as successfully recalled in at least one subsequent login (after the initial create and conï¿‰rm). We also only
use data from 223 out of 378 accounts, as this was the number that provided explicit consent as required by
university policy. These 223 user accounts map to 189 distinct users as 34 users in our study belonged to
two classes; all but one of these users were assigned a different image for each account, and both accounts
for a given user were set to have the same error tolerance. Of the 223 user accounts, 114 used pool and 109
used cars as a background image.

3.2 Hot-Spot Results

We present the hot spots found in both the lab and ï¿‰eld studies. How we compute hot-spots is described
in Section 3.2.1, as well as the hot-spots discovered in the lab study. A comparison of hot-spotting across
different lab study images is provided in Section 3.2.2. Finally, the hot-spots discovered in the ï¿‰eld study
are presented in Section 3.2.3.

3.2.1 Hot-Spots Computed from Lab Study Data

We collected data from the in-lab study as described in Section 3.1.1, and used a clustering algorithm (see
below) to determine a set V of (non-empty) clusters and their sizes.
Clustering Algorithm. To calculate clusters (the size of which deï¿‰nes hot-spots) based on any user data
set of raw click-points, we assign all of the observed user click-points to clusters as follows. Let R be the raw
(unprocessed) set of click-points, M a list of temporary clusters, and V the ï¿‰nal resulting set of clusters. M
and V are initially empty.

1. For each ck ∈ R, let Ck be a temporary cluster containing click-point ck. Temporarily assign all user
click-points in R within ck ï ¿ ‰s T-region to Ck. Add Ck to M . Each ck ∈ R can thus be temporarily
assigned to multiple clusters Ck.

2. Sort all clusters in M by size, in decreasing order.
3. Greedily make permanent assignments of click-points to clusters as follows. Let C� be the largest

cluster in M . Permanently assign each click-point ck ∈ B� to C�, then delete each ck ∈ B� from all
other clusters in M . Delete C� from M , and add C� to V . Repeat until M is empty.

This process determines a set V of (non-empty) clusters and their sizes. We then calculate the observed
ï¿‰probabilityï¿‰ pj (based on our data set) of the cluster j being clicked, as cluster size divided by total clicks
observed.

To begin comparing the 17 images studied, Figure 2 shows the sizes of the top ï¿‰ve most popular clusters,
and the total number of popular clusters.

Given the cluster sizes, we then calculate the observed ï¿‰probabilityï¿‰ pj (based on our user data set) of the
cluster j being clicked, as cluster size divided by total clicks observed. When the probability pj of a certain
cluster is sufficiently high, we can place a conï¿‰dence interval around it for future populations (of users who
are similar in background to those in our study) using formula (1) as discussed below.

Each probability pj estimates the probability of a cluster being clicked for a single click. For 5-click
passwords, we approximate the probability that a user chooses cluster j in a password by 5pj . Note that the

2Analysis showed little difference between the points chosen for these different tolerance groups.
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Figure 2: The ï¿‰ve most popular clusters (in terms of size, i.e., number of times selected), and number of popular
clusters (of size ≥ 5). Results are from 32-40 users, depending on the image, for the ï¿‰nal passwords created on each
image.

probability for a cluster j increases slightly as other clicks occur (due to the constraint of 5 distinct clusters
in a password); we ignore this in our estimate.

Our results in Figure 2 indicate a signiï¿‰cant number of hot-spots for our sample of the full population
(32 ï¿‰ 40 users per image). Previous ï¿‰conservativeï¿‰ assumptions [47] were that half of the available alphabet
of T-regions would be used in practice ï¿‰ or 207 in our case. If this were the case, and all T-regions in the
alphabet were equi-probable, we would expect to see some clusters of size 2, but none of size 3 after 40
participants; we observed signiï¿‰cantly more on all 17 images. Figure 2 shows that some images were clearly
worse than others in terms of the amount of hot-spotting. There were many clusters of size at least 5, and
some as large as 16 (see tea image). If a cluster in our lab study received 5 or more clicks ï¿‰ in which case
we call it a popular or high-probability cluster ï¿‰ then statistically, this allows determination of a conï¿‰dence
interval, using formula (1) which provides the 100(1 ï¿‰ α)% conï¿‰dence interval for a population proportion
[12, page 288].

p ï¿‰ zα/2

√
pq

m
(1)

Here m is the total number of clicks (i.e., ï¿‰ve times the number of users), p takes the role of pj, q = 1 ï¿‰ p,
and zα/2 is from a z-table. A conï¿‰dence interval can be placed around pj (and thus 5pj) using (1) when
mp ≥ 5 and mq ≥ 5. For clusters of size k ≥ 5, p = k

m , then mp = k and mq = m ï¿‰ k. In our case, m ≥ 32 ï¿‰ 5
and m ï¿‰ k ≥ 5, as statistically required to use (1).

Table 1 shows these conï¿‰dence intervals for four images, predicting that in future similar populations
many of these points would be clicked by 10-50% of users, and some points would be clicked by 20-60% of
users with 95% conï¿‰dence ( α = .05). For example, in Table 1(a), the ï¿‰ rst row shows the highest frequency
cluster (of size 13); as our sample for this image was 35 users, we observed approximately 37.1% of our
participants choosing this cluster as part of their password. Using (1), between 17.7% and 56.6% of users
from future populations are expected to choose this same cluster (with 95% conï¿‰dence).

Figure 2 and Table 1 show the popularity of the hottest clusters; Figure 2ï¿‰s line graph also shows the
number of popular clusters. The clustering effect evident in Figures 2, 3, and Table 1 clearly establishes that
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(a) pool (originally from [46, 47]). (b) mural (originally from [46]).

(c) philadelphia (originally from [46]). (d) truck (originally from [15]).

Figure 3: Observed click-points from lab study. Halo diameters are 10 times the size of the underlying cluster,
illustrating cluster popularity.
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(a) pool image (b) mural image
Cluster Cluster

size 5pj 95% CI (5pj) size 5pj 95% CI (5pj)
13 0.371 (0.177; 0.566) 14 0.400 (0.199; 0.601)
12 0.343 (0.156; 0.530) 13 0.371 (0.177; 0.566)
12 0.343 (0.156; 0.530) 10 0.286 (0.114; 0.458)
11 0.314 (0.134; 0.494) 8 0.229 (0.074; 0.383)
11 0.314 (0.134; 0.494) 7 0.200 (0.055; 0.345)

(c) philadelphia image (d) truck image
Cluster Cluster

size 5pj 95% CI (5pj) size 5pj 95% CI (5pj)
10 0.286 (0.114; 0.458) 15 0.429 (0.221; 0.636)
10 0.286 (0.114; 0.458) 14 0.400 (0.199; 0.601)
9 0.257 (0.094; 0.421) 13 0.371 (0.177; 0.566)
9 0.257 (0.094; 0.421) 13 0.371 (0.177; 0.566)
7 0.200 (0.055; 0.345) 13 0.371 (0.177; 0.566)

Table 1: 95% conï¿‰dence intervals for the top 5 clusters found in each of four images. The two numbers separated
by semicolons represent the lower and upper bounds on the probability that users are expected to choose this cluster
in future populations.

hot-spots are very prominent on a wide range of images. We further pursue how these hot-spots impact the
practical security of full 5-click passwords in Section 4.2. As a partial summary, our results suggest that
many images have signiï¿‰cantly more hot-spots than would be expected if all T-regions were equi-probable.
The paperclips, cars, faces, and tea images are not as susceptible to hot-spotting as others (e.g., mural, truck,
and philadelphia). For example, the cars image had only 4 clusters of size at least 5, and only one with
frequency at least 10. The mural image had 15 clusters of size at least 5, and 3 of the top 5 frequency clusters
had frequency at least 10. Given that our sample size for the mural image was only 36 users, these clusters
are suprisingly popular. This demonstrates the range of effect the background image can have.

While previous work [46] suggests using intuition for choosing more secure background images, our results
show that intuition may not always be a good indicator. Of the four images used in other click-based graphical
passwords studies, three showed a large degree of clustering (pool, mural, and philadelphia). Furthermore,
two other images that we ï¿‰intuitivelyï¿‰ believed would be more secure background images were among the
worst (truck and citymap-nl). The truck image had 10 clusters of size at least 5, and the top 5 clusters had
frequency at least 13. Discussing criteria for image selection is outside of the scope of this paper.

Given these remarks, we next explore the impact of hot-spotting across images to help choose two images
for further analysis.

3.2.2 Measurement and Comparison of Hot-Spotting for Different Images

To compare the relative impact of hot-spotting on each image studied, we calculated two formal measures
of password security for each image: entropy H(X) per equation (2), and the expected number of guesses
E(f(X)) per equation (3), to correctly guess a password assuming the attacker knows the probabilities
wi > 0 for each password i. The relationship between H(X) and E(f(X)) for password guessing is discussed
by Massey [27]. Of course in general, the wi are unknown, and our study gives only very coarse estimates;
nonetheless, we ï¿‰nd it helpful to use this to develop an estimate of which images will have the least impact
from hot-spotting. For (2) and (3), n is the number of passwords (of probability > 0), random variable X
ranges over the passwords, and wi = P rob(X = xi) is calculated as described below.

H(X) = ï¿‰
n∑

i=1

wi ï¿‰ log(wi) (2)
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E(f(X)) =
n∑

i=1

i ï¿‰ wi, where wi ≥ wi+1, and (3)

f(X) is the number of guesses before success.
We calculate these measures based on our observed user data. For this purpose, we assume that users will

choose from a set of click-points (following the associated probabilities), and combine 5 of them randomly.
This assumption almost certainly over-estimates both E(f(X)) and H(X) relative to actual practice, as it
does not consider click-order patterns or dependencies. Thus, popular clusters likely reduce security by even
more than we estimate here.

We deï¿‰ne Pclstr to be the set of all 5-permutations derivable from the clusters resulting from our user
study data set (as computed in Section 3.2.1). Using the probabilities pj of each cluster, the probabilities
wi of each password in Pclstr are estimated as follows. Pick a combination of 5 observed clusters j1, . . . , j5

with respective probabilities pj1, . . . , pj5. For each permutation of these clusters, calculate the probability
of that permutation occurring as a password. Due to our lab study instructions that no two click-points
in a password can fall in the same T-region, these probabilities change as each point is clicked. Thus, for
password i = (j1, j2, j3, j4, j5), wi = (pj1 ï¿‰ [pj2/(1 ï¿‰ pj1)] ï¿‰ [pj3/(1 ï¿‰ (pj1 + pj2))] ï¿‰ . . .).

The resulting set Pclstr is a set of click-based graphical passwords (with associated probabilities) that
coarsely approximates the effective password space if the clusters observed in our lab study are representative
of those in larger similar populations. We can order the elements of Pclstr using the probabilities wi based
on our lab study. An ordered Pclstr could be used as the basis of an attack dictionary; this ordering could
be much improved, for example, by exploiting expected patterns in click-order as in Section 4.2.

For further comparison to previous ï¿‰conservativeï¿‰ estimates that half of the available click-points (our
T-regions) would be used in practice, we calculate Puni as follows. Puni is the set of all 5-permutations
of clusters we expect to ï¿‰nd after observing 32 users, a ssuming click-points are selected independently and
uniformly at random from an alphabet of size 207. We use Puni as a comparison baseline that approximates
what we would expect to see after running 32 users (the lowest number of users we have for any image), if
previous estimates were accurate, and T-regions were equi-probable.

We use entropy and expected number of guesses as an estimate of the security (measured in bits). Fig.
4 depicts the entropy and expected number of guesses for Pclstr. Notice the range between images, and
the drop in E(f(X)) from Puni to values of Pclstr. Comparison to the marked Puni values for (1) H(X),
and (2) E(f(X)), indicates that previous rough estimates are a security overestimate for practical security
in all images, some much more so than others. This is at least partially due to click-points not being
equi-probable in practice (as illustrated by hot-spots), and apparently also due to the previously suggested
effective alphabet size (half of the full alphabet) being an overestimate. Indeed, a large alphabet is a big
part of the theoretical security advantage that these graphical passwords have over text passwords. If the
effective alphabet size is not as large as previously expected, or is not well-distributed, then we should reduce
our expectations of the security.

These results appear to provide fair approximation of the entropy and expected number of guesses for
the larger set of users in the ï¿‰eld study; we performed these same calculations again using the ï¿‰eld study
data, with the following results. For both of the two images, the entropy measures were within one bit of
values computed for the lab study (less than a bit higher for pool, and about one bit lower for cars). The
expected number of guesses required using the ï¿‰ eld study data increased for both images (by 1.3 bits for
cars, and 2.5 bits for pool).

The variation across all images shows that the background image can have a signiï¿‰cant impact, even
when using images that are ï¿‰intuitivelyï¿‰ good to some people. For example, the image that exhibited the
most hot-spotting was the mural image, chosen for an earlier PassPoints usability study [46]. We note that
the paperclips image scores best in the charted security measures (its H(X) measure is within a standard
deviation of Puni); however, 8 of 36 users who created a password on this image could not perform the
subsequent login (and skipped it ï¿‰ as noted earlier), so the data for this image represents some passwords
that are not repeatable, and thus we suspect it would have lower relative security in practice.

Overall, we conclude that image choice can have a signiï¿‰cant impact on the resulting security, and that
developing reliable methods to ï¿‰lter out images that are the most susceptible to hot-spotting would be an
interesting avenue for future research. We used our computed values of these formal measures to make an
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informed decision on which images to study further in our ï¿‰eld study.

3.2.3 Field Study Hot Spots and Relation to Lab Study Results

Here we present the clustering results from the two images used in the ï¿‰eld study, and compare results to
those on the same two (of 17) images from the lab study.

Fig. 5b shows that the areas that emerge as hot-spots in the lab study (cf. Fig. 3a) were also popular in
the ï¿‰eld study, but other clusters also began to emerge. Fig. 5a shows that even our ï¿‰bestï¿‰ image from the
lab study (in terms of apparent resistance to clustering, after eliminating an image with poor memorability)
also exhibits a clustering effect after gathering 109 passwords. Table 2 provides a closer examination of the
clustering effect observed.

(a) cars (originally from [4]). (b) pool (originally from [46, 47]).

Figure 5: Observed clustering (ï¿‰eld study). Halo diameter is 5 times the number of underlying clicks.
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Image Size of most popular clusters number of clusters
Name # 1 # 2 # 3 # 4 # 5 of size ≥ 5
cars 26 (24%) 25 (23%) 24 (22%) 22 (20%) 22 (20%) 32
pool 35 (31%) 30 (26%) 30 (26%) 27 (24%) 27 (24%) 28

Table 2: Most popular clusters (ï¿‰eld study). The number of user accounts was 114 ( pool) and 109 (cars).

Table 2 shows that on pool, there were 5 points that 24-31% of users chose as part of their password. On
cars, there were 5 points that 20-24% of users chose as part of their password. The clustering on the cars
image indicates that even highly detailed images with many possible choices have hot spots. Indeed, we were
surprised to see a set of points that were this popular, given the small amount of observed clustering on this
image from our smaller lab study.

The prediction intervals calculated from our lab study (recall Section 3.1.1) provide reasonable predictions
of what we observed in the ï¿‰eld study. For cars, 3 out of the 4 popular clusters fell within the 95% prediction
interval. For pool, 8 out of the 9 popular clusters fell within the 95% prediction interval. The anomalous
cluster on cars was still quite popular (chosen by 12% of users); the lower end of the lab studyï¿‰s prediction
interval for this cluster was 20%. The anomalous cluster on pool was also still quite popular (chosen by 18%
of users); the lower end of the lab studyï¿‰s prediction interval for this cluster was 19%.

Our studies allow us to comment on what fraction of all T-regions on an image will be chosen by
users. After collecting 570 and 545 points, we only observed 111 and 133 unique clusters (for pool and cars
respectively); thus, one quarter to one third of all T-regions seems to be a reasonable estimate for highly
detailed images, and the relative probabilities of these regions should be expected to vary quite considerably.

3.3 Limitations of User Studies

As with all user studies, it is important to discuss possible limitations. There are differences between our lab
and ï¿‰eld studies, which is reï¿‰ected in the amoun t of clustering observed between studies for the cars image,
but the clustering for the pool image is quite similar in each study. More details regarding these differences
are discussed in Section 5.5. Here we discuss possible reasons for these differences.

One possible reason for the differences in user choice between the two studies that the ï¿‰eld study users
may not have been as motivated as the lab study users to create ï¿‰difficult to guessï¿‰ graphical passwords.
The ï¿‰eld study users were using their passwords to pr otect class notes, whereas the lab study users were
asked to pretend the password was for banking. It is unclear how a user might measure whether they are
creating a graphical password that is difficult to guess, and whether in trying, if users would actually change
their passwordï¿‰s strength; one study [36] found that only 40% of users actually change the complexity of
their text passwords according to the security of the site.

Another equally possible explanation might be that the lab study users chose more difficult passwords
than they would have in practice, as they were aware there was no requirement for long term recall, and also
did not have a chance to forget and subsequently reset their passwords to something more memorable. In
the ï¿‰eld study, users had a requ irement for long-term recall.

Another possible reason might be that the userï¿‰s task focus in the lab study had an inï¿‰uence, such
that they were more motivated to create a more complex password than they might be in a regular usage
environment. Finally, demographic differences between the lab user group and students in the ï¿‰eld study
classes may have been a contributing factor.

With our current data, it seems unlikely that we can conclusively determine a reason for these differences.
Despite any differences, Section 5 illustrates that there is still enough similarity between the two groups to
launch effective attacks as discussed in Section 4.1.

4 Attack Methodology

We used our single-session lab study data (recall Section 3.1.1) as a ï¿‰human-computedï¿‰ data set containing
raw user click-points. This set of click-points is ï¿‰rst reduced to a set of unique points and associated
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probabilities, using the clustering algorithm described immediately below. We then use these unique points
to generate different styles of ï¿‰human-seededï¿‰ graphica l dictionaries as described in Section 4.1. We also
examined dictionaries based only on click-order patterns in Section 4.2. Finally, we perform a cross-validation
analysis of one of our human-seeded methods using real ï¿‰eld study user passwords (see Section 4.3). Our
experimental results for each of these dictionaries is given in Section 5.

4.1 Human-Seeded Attacks

We are interested in predicting the hot-spots that users will choose in their passwords, for use in a guessing
attack. Human-seeded attacks are motivated by the following two conjectures. Regardless of the degree to
which these conjectures are true, by using them as guiding principles we were able to demonstrate working
attacks, which is our objective herein, rather than proving or disproving these conjectures per se.

Conjecture 1 Since an arbitrary group of people is likely to collectively prefer some areas of an image, the
aggregate effect across a group of users will be that a signiï¿‰cant subset choose click-based graphical passwords
composed of some points that have a higher collective preference across another group of users.

Conjecture 2 The most popular points selected in a human-computed data set can be used to distinguish
points of higher collective preference across another group of users.

Our human-seeded attacks use a ï¿‰human-computedï¿‰ data set as input to generate an attack. We refer to
a human-seeded dictionary as one whose passwords are composed of click-points corresponding to T-regions
that users prefer, as deï¿‰ned by popular points observed in a human-computed data set.

We examine two different methods of generating human-seeded attacks based on a human-computed data
set of click-points: one assuming that cluster probabilities are independent (Section 4.1.1), and the other
assuming that cluster probabilities are dependent only on the previous click-point (Section 4.1.2).

4.1.1 Independent Cluster Probabilities

Here we assume that each click-point in a password is independent of the other click-points. The ï¿‰nal
dictionary, denoted Pclstr contains all 5-permutations of the ï¿‰nal clusters in V as computed by the clustering
algorithm above. The probability of each 5-permutation in Pclstr is deï¿‰ned by the product of the probability
of its 5 composite clusters, whose individual probabilities pj are derived from a human-computed data set.
We call our particular implementation of this human-seeded dictionary Shs−ind.

4.1.2 First-Order Markov Model

A method that has been used by text password cracking software (e.g., [29]) is to use Markov models of
language (under the predictive assumption that users will choose passwords from their language), and to
generate passwords using bi- or tri-grams from that language, ordered by decreasing probability. Here, using
our human-computed data set for training, we create a human-seeded dictionary for PassPoints that we call
Shs−dep, based on a ï¿‰rst-order Markov model. The main difference from the similar method of Davis et al.
[11] (see discussion in Section 6) is the use of this human-computed data set (instead of a real password
database from the same population), and as such our Shs−dep is much more easily launched by an attacker.
We also separately perform an experiment (on the ï¿‰eld study data set) similar to the random sub-sampling
experiment of Davis et al. [11], as outlined in Section 4.3.

To use a Markov model for our purposes, we assume that each click-point in a click-based graphical
password depends only on the previous click-point. To capture this dependency, we created bi-grams based
on the passwords collected in the lab study. In this work, our bi-gram is an ordered pair of click-points; each
5-click password will produce four bi-grams. We further assume that bi-grams are more likely to occur at the
speciï¿‰c positions in which they were observed within the training passwords; for example, if the pair of (x,y)
pixel coordinates [(100, 100), (200, 200)] was only observed as the ï¿‰rst bi-gram in a password, we assume that
it is more likely that it will occur as the ï¿‰rst two points in a password than in any other position. Thus, we
include counts of the observed bi-gram positions in our training (each bi-gram would be observed in at least
one of the four possible bi-gram positions).
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Using the full human-computed data set B (i.e., the click-points collected from all users) for a single
image from our lab study,3 we use the following method:

(I) Create position-aware, normalized bi-grams as follows. Using B: (1) calculate clusters per the algorithm
in Section 3.2.1; (2) for each password i ∈ B, normalize each of the 5 click-points to the center of the
cluster each belongs to; and (3) split each normalized password into four bi-grams [(x1, y1), (x2, y2)],
[(x2, y2), (x3, y3)], [(x3, y3), (x4, y4)], [(x4, y4), (x5, y5)]. Each position-aware, normalized bi-gram has a
set of 5 counts: one for total frequency, and four position frequencies (i.e., one frequency count for each
of four possible observed bi-gram positions).

(II) Generate all possible distinct passwords based on the bi-grams created in (I), using each bi-gram in
a given position if the frequency count at that position is greater than zero. The probability of a
generated password is based on the product of the frequencies of each bi-gram at its position within
the generated password.

(III) Sort generated passwords by decreasing probability, and use the sorted list in an exhaustive attack to
guess the ï¿‰eld study passwords.

4.2 Click-Order Pattern Attacks

Dependencies between click-points could drastically reduce the size of the effective password space; thus, we
are also interested in predicting the dependencies between click-points (beyond those considered using the bi-
grams of Section 4.1.2) that users may choose in their passwords. Findings that people are better at recalling
fewer pieces of visual information [25], and tend to ï¿‰clumpï¿‰ information together to aid memorability [10],
motivate us to propose and explore Conjecture 3.

Conjecture 3 Since people ï¿‰nd it easier to recall fewer pieces of information, a signiï¿‰cant subset of users
are likely to choose sets of points that they can ï¿‰clumpï¿‰ together by an association between all or most of the
points. Such associations include visual similarity (such as in the shape, color, or intensity of the underlying
objects), or the overall formation of a simple geometric pattern on the image (such as left to right).

Consequently, we ï¿‰rst explore in Section 5.2 click-based graphical passwords composed of a sequence of
points that follow a simple click-order pattern independent of the underlying image (we do not explore other
types of visual similarity in the present paper). Later in Section 5.3 we combine click-order patterns with
human-seeded attacks.

Click-order pattern dictionaries can consider any click-order pattern that a user might use to relate his/her
click points to one another. For example, this might include general sweeping directions from left to right
or right to left. We consider a small set of such click-order patterns herein: DIAG (click-based graphical
passwords composed of click points in a consistent horizontal and vertical direction, which includes straight
lines as in Figure 6), HOR (click points in a consistent horizontal direction), VER (click points in a consistent
vertical direction), CWCCW (click points in a consistent clockwise or counter-clockwise direction). We preï¿‰x
each of these subclasses with Sclk−ord- to denote our particular classiï¿‰cation.

We estimate the number of passwords in our ï¿‰eld study database that would be guessed by a click-order
pattern dictionary using a program to test the conditions (for each click-order pattern) described further
below against each password. We estimate the size of each click-order pattern dictionary in an image-
independent manner that is a function of the image dimension and T-region size, using the centers of all
T-regions in the entire alphabet space for non-overlapping coverage of the image. For the purpose of this
analysis, our base set of T-region centers are aligned such that their T-regions do not overlap, meaning that
they begin at pixel coordinates (10, 10), and are in subsequent increments of the T-region size (19 pixels).
Only those 5-permutations whose click-points (xi, yi), i = 1, 2, . . . , 5 follow one of the following click-order
pattern conditions are counted for the corresponding dictionary:

(i) HOR: left-to-right (LR, with xi ≤ xi+1) or right-to-left (RL, with xi ≥ xi+1).

(ii) VER: top-to-bottom (T B, with yi ≤ yi+1) or bottom-to-top (BT , with yi ≥ yi+1).
3This could be done with any password data set, but in this case, we use those from our lab study.
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Figure 6: Example Sclk ï¿‰ ord-DIAG password.

(iii) DIAG: LR and (TB or BT), or RL and (TB or BT).

(iv) CWCCW: All sequences of three consecutive points are in the same direction (clockwise or counter-
clockwise as computed by Bourke [3]), and the sum of the angles between the three sequences of three
consecutive points in the password is no greater than 360 degrees.

In words, HOR is a horizontal sweep from right to left or left to right; VER is a vertical sweep from
top to bottom or bottom to top; DIAG is a sweep in both a certain horizontal and vertical direction; and
CWCCW is either a clockwise or counter-clockwise, non-overlapping sweep. However, in each of the listed
conditions, equality takes the error tolerance t into account; for example, if x1 to x4 all follow a left to right
click-order pattern, and then x5 ≥ x4 ï¿‰ t, the entire password will be considered to have a HOR click-order
pattern.

4.3 Cross-Validation Analysis

Here we describe the 10-fold cross-validation methodology for our human-seeded attack that is based on
a ï¿‰rst-order Markov model. Cross-validation is performed on a single data set that is partitioned into k
folds, k ï¿‰ 1 of them used for training and the remaining one for testing. Each of the k folds take turns
being used as the testing fold, and the results are averaged. Cross-validation (in particular where k = 10) is
the recommended method for evaluating the performance of a classiï¿‰er [24]. This method is similar to the
random sub-sampling method used by Davis et al. [11] on recognition based graphical passwords, but has
the advantage that each datum is tested precisely once in the k rounds.

We perform a random shuffling of our ï¿‰eld study password database, then partition the shuffled database
into 10 folds of approximately equal size. One fold is kept for testing, the other 9 are used to train a ï¿‰rst-
order Markov model as in Section 4.1.2. The fold offset location (controlling the partitioning) is randomly
chosen in each of 30 rounds to ensure the fold location does not affect our results.

This methodology may result in a higher guessing success rate than when we use the lab study data
set for a variety of reasons. It is conceivable that the ï¿‰eld study data is more representative of passwords
actually chosen in the long-term, or that the training fold is similar to the testing folds because they are
from the same population. If its success is related to the former, the cross-validation analysis models an
attacker that is able to obtain a real cleartext password database for training. Although it is considerably
more difficult for an attacker to obtain a real cleartext password database, it is possible (e.g., by setting up
a web service that uses the system and background image under attack). In either case, the efficacy of such
an attack should be examined as an estimate of how well an attacker with an ideal data set could perform.

After randomly shuffling the database, we perform the following method 30 times, for a given image:
(i) select a random offset into our ï¿‰eld study password database, and divide (starting from the offset) into
10 approximately equal folds; (ii) for each of the 10 folds, keep one out as a test set. Then (a) use the
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remaining 9 folds to create position-aware, normalized bi-grams; (b) from the bi-grams, generate passwords
as described in Section 4.1.2, sorted by decreasing probability; and (c) use the sorted list to guess passwords
among the test set.

5 Results

We present the results of applying each of the types of dictionary attack described in Section 4 to our ï¿‰eld
study database. The limitations discussed in Section 3.3 should be taken into consideration when interpreting
these results.

5.1 Human-Seeded Attack Results

For reference, Table 3 summarizes the terminology and symbols used in this paper.

Dictionary Description
Name
Pclstr An unordered dictionary containing all possible 5-permutations derivable from all

clusters computed from a data set of click-points (as computed in Section 3.2.1).
P u

clstr An unordered dictionary containing all possible 5-permutations derivable from all
clusters computed from a data set of click-points (for a given data set with u users).

Puni All possible 5-permutations of clusters we expect to ï¿‰nd after observing 32 users
(the smallest number of lab study users we have for any image), assuming click-
points are selected independently and uniformly at random from an alphabet of size
207 (half of the full alphabet size).

Praw An unordered dictionary containing all possible 5-permutations from a data set of
raw click-points (not processed into clusters).

P u
raw An unordered dictionary containing all possible 5-permutations from a data set of

raw click-points (for a given data set with u users).
Sclk−ord Preï¿‰x used for one of our particular implementations of an (unordered) click-order

pattern dictionary.
Shs−ind An ordered Pclstr dictionary, using our data sets to calculate clusters and the

probability (and thus order) of the resulting dictionary entries.
Shs−dep An ordered dictionary, generated using a ï¿‰rst-order Markov model of all clusters

from our data sets of click-based graphical passwords.

Table 3: Summary of various dictionary sets used in this paper.

5.1.1 Results for Independent Cluster Probabilities

Our results in Table 4 are for human-seeded attacks on the ï¿‰eld study database, using the lab study data as
our human-computed data set. We use two different types of dictionary: Pclstr, an ordered dictionary that
uses the independent cluster probabilities of Section 4.1.1, and Praw, an unordered dictionary that uses the
raw (unprocessed) click-points chosen by the lab users. Note that although the clustering algorithm reduces
the size of the dictionary, it also reduces its efficacy. The full Pclstr dictionaries (line 2 in Table 4) nonetheless
still eventually ï¿‰nd a large number of passwords (20-36%, which is more than half to two-thirds of the number
of passwords eventually found by Praw), while reducing the number of entries in the dictionaries by a factor
of 23.3 to 26. Table 4 also shows the effect of reducing the number of people to generate a human-computed
data set: as expected, it also reduces the efficacy of the dictionary generated, but 5 click-points each from as
few as 15 different people can generate enough information to ï¿‰nd 11-23% of passwords (on average), with
dictionaries containing 226.4 to 228.8 entries.

The most striking result shown is that initial password choices harvested from 15 users, in a setting where
long term recall is not required, allowed us to ï¿‰nd (on average) 23% of the ï¿‰eld study passwords for pool (see
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Set cars (u = 33) pool (u = 35)
bit- number of passwords bit- number of passwords
size guessed out of 109 size guessed out of 114

avg min max avg min max
P u

raw 36.7 37(34%) ï¿‰ ï¿‰ 37.1 59(52%) ï¿‰ ï¿‰
P u

clstr 33.4 22(20%) ï¿‰ ï¿‰ 31.1 41(36%) ï¿‰ ï¿‰
P 25

raw 34.7 24(22%) 9(8%) 35(32%) 34.7 42(37%) 29(25%) 56(49%)
P 25

clstr 31.9 21(19%) 7(6%) 27(25%) 29.2 34(29%) 19(17%) 47(41%)
P 20

raw 33.1 22(20%) 8(7%) 32(29%) 33.1 35(31%) 24(21%) 55(48%)
P 20

clstr 30.6 17(16%) 8(7%) 30(28%) 28.2 28(25%) 18(16%) 43(38%)
P 15

raw 30.9 14(13%) 4(4%) 25(23%) 30.9 30(27%) 20(18%) 45(39%)
P 15

clstr 28.8 12(11%) 4(4%) 24(22%) 26.4 26(23%) 14(12%) 43(38%)

Table 4: Dictionary attacks using different sets. All percentages in the table (after the ï¿‰rst two rows) are the result
of 10 randomly selected subsets of u = 15, 20, 25 lab study user passwords. Bitsize of x implies 2x dictionary entries.
For rows 1 and 2, note that u = 33 and 35. See text for descriptions of Pclstr and Praw. P u

clstr is what we refer to as
Shsï¿‰ ind. ï¿‰ The ï¿‰rst two rows use all data from the short-term study to seed a single dictionary, and as such, there
are no average, max, or min values to report.

P 15
clstr), and with a smaller dictionary. As we expected, cars was not as easily attacked as pool (guessing on

average 11% for P 15
clstr); more user passwords are required to seed a dictionary that achieves similar success

rates (see P 25
clstr).

We can place an ordering on the Shs−ind (i.e., P u
clstr ) dictionary such that the passwords are ordered

from most to least probable (as deï¿‰ned by the probabilities, from the human-seeded data set, of each cluster
in the password). Using this ordering, we next examine the cumulative distribution function (CDF) of P u

clstr

for each image, as shown in Figure 7. This provides a much more efficient attack than guessing P u
raw or

P u
clstr in no particular order, supported by the information in Table 4.
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Figure 7 illustrates how much more effective the ordered Shs−ind dictionary is for pool than for cars :
about 10% of passwords are found in the ï¿‰rst 10 000 guesses, and 5% are found within the ï¿‰rst 2 000. In
contrast, the Shs−ind dictionary for cars found 10% of passwords only after over the ï¿‰rst 10 9 dictionary
entries, and 5% after over 4 ï¿‰ 108 guesses. This is likely due to the low amount of clustering observed in the
data collected in the lab study on cars, leading to most clusters having the same probability, producing less
advantage from ordering.

In Figure 7 (and in later CDF ï¿‰gures), it appears that some guesses match a large number of passwords.
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In this attack, it is not meaningful to give a particular ordering of a combination of ï¿‰ve click-points a higher
priority over another. Thus, we report the number of successful guesses for a combination of points after
having guessed all 120 permutations, meaning that when a guess appears to be particularly popular, it
indicates the combination of points is popular, not necessarily a single permutation. The graphs and tables
are generated such that they report the results for a combination after all permutations have been guessed.

5.1.2 Results for First-Order Markov Model

Our results for the method of Section 4.1.2, presented as a CDF in Figure 8, show that using our method
based on a ï¿‰rst-order Markov model (as opposed to independent cluster probabilities) guesses more passwords
earlier (after 100 guesses, 10% for pool and 4% for cars), but once the dictionary has been exhausted, it
guesses fewer than with independent probabilities (a total of 11% for pool and 4% for cars). This is because
the attack generates fewer dictionary entries than when independent probabilities are used, because when
a bi-gram is not observed in the human-seeded data set, it is assumed to have probability 0. Thus, not
all bi-grams will generate more than one password (e.g., a single password in the human-seeded data set,
whose click-points do not belong to any other clusters, will only be part of an equivalent single password
in the ï¿‰nal Shs−dep dictionary). This suggests a human-seeded dictionary attack strategy of ï¿‰rst guessing
those passwords generated based on a ï¿‰rst-order Markov model, and then the passwords generated with
independent cluster probabilities as per Section 5.1.1. We do not however pursue this strategy further in the
present paper.
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Figure 8: CDF of human-seeded attack based on a ï¿‰rst order Markov model (i.e., Shsï¿‰ dep) for pool and cars.
Passwords in the ï¿‰eld study database: 109 ( cars), 114 (pool).

Figure 8 demonstrates that a number of users in the ï¿‰eld study chose the exact same click-points, in the
exact same order. The 11th guess for cars ï¿‰nds 3 passwords, and the 24 th guess for pool ï ¿ ‰nds 5 passwords.
The attack results in Section 5.1.1 are for all orders/permutations for each combination, whereas this attack
uses a different (order-based) model.

5.2 Click-Order Pattern Attack Results

Table 5 shows the number of passwords that would be found after applying Sclk−ord to attack the ï¿‰eld study
password database for various click-order patterns per Section 4.2.

The most striking result in Table 5 is that the DIAG click-order pattern, which produces the smallest
Sclk−ord dictionary, would guess almost 46% of passwords for cars, and 26% for pool, implying that the
dictionary resulting from the Sclk−ord-DIAG pattern is more effective than that of Shs−ind. These results
also give some insight as to which click-order patterns are most popular, and how much the effectiveness of
these click-order patterns can differ depending on the image.4 For example, the DIAG, HOR, and V ER

4More precisely, while these click-order pattern dictionaries are constant across all images, their effectiveness varies as a
result of speciï¿‰c images inducing users to select passwords that fall into patterns.
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Dictionary bitsize of cars pool
dictionary number of passwords number of passwords

DIAG 33.0 50/109 (45.9%) 30/114 (26.3%)
HOR 38.0 65/109 (59.6%) 53/114 (46.5%)
V ER 38.3 71/109 (65.1%) 39/114 (34.2%)
CW CCW ï¿‰ 8/109 (7.3%) 13/114 (11.4%)

Table 5: Sclk ï¿‰ ord results using various click-order patterns for all T-regions. Bitsize of x implies 2x dictionary entries.
ï¿‰ This value was too combinatorially costly to compute per our method.

click-order patterns are much more popular in cars than pool, which is sensible given that cars depicts cars
parked in straight rows. It is interesting that despite few obvious straight-line structures in pool (aside from
the pillars on the left hand side), the DIAG, HOR, and V ER patterns are all still quite popular. Only
7-11% of passwords followed the CW CCW pattern, which is thus the least popular of those examined.

Overall, Table 5 motivates the following attack ordering optimization within Sclk−ord: DIAG, HOR,
V ER, CW CCW . Of course, since some of these sets have a non-null intersection, the intersection with
previous groups should be removed in later groups. For example, the HOR and V ER dictionaries both
contain DIAG as a subset. Further work on click-order patterns is beyond the scope of this paper, and is
provided in another paper [30].

5.3 Combined Human-Seeded and Click-Order Attack Results

Here we brieï¿‰y explore combining human-seeded attacks with click-order patterns, by examining the efficacy
of intersecting Sclk−ord with Shs−ind.

We ordered entries in the intersection of the human-seeded (P u
clstr , i.e., Shs−ind) and click-order pattern

dictionaries from most to least probable (as deï¿‰ned by the product of the probabilities, based on the lab
study data set, of each cluster in the password). The results of applying this ordering of Shs−ind ∩ Sclk−ord

for each image are shown in Figure 9(a) and 9(b).
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(a) pool (114 ï¿‰eld study user passwords) (b) cars (109 ï¿‰eld study user passwords)

Figure 9: CDFs of Shsï¿‰ ind ∩ Sclk ï¿‰ ord. Each click-order pattern label is abbreviated (e.g, CWCCW denotes Sclk ï¿‰ ord-
CWCCW). NONE is for Shsï¿‰ ind alone, i.e., the human-seeded attack with independent cluster probabilities, and no
click-order pattern applied.

Overall, the results show that intersecting Shs−ind with the Sclk−ord dictionaries (except CW CCW ) pro-
vides better performance than the Shs−ind dictionary alone (at least initially). This is evident by comparing
each line in Figure 9 to the NONE line, which illustrates the CDF of Shs−ind alone. The effect is more
striking for pool than for cars ; for example, in Fig. 9(a) we see the Shs−ind ∩ Sclk−ord-DIAG dictionary ï¿‰nds
the ï¿‰rst 7 passwords (6% of the total) within 5 guesses. In general for pool, Fig. 9(a) shows that all Shs−ind
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∩ Sclk−ord dictionaries (except CW CCW ) perform better than Shs−ind alone initially, but by the time they
are exhausted, the performance is better for Shs−ind alone. For cars, Fig. 9(b) shows that each Shs−ind ∩
Sclk−ord dictionary performs better than Shs−ind alone (except for the ï¿‰rst thr ee correct guesses for which
only Sclk−ord ï¿‰ V ER is superior).

5.4 Cross-Validation Analysis Results

Here we provide cross-validation analysis results, i.e., from 30 rounds of 10-fold cross-validation using only
the ï¿‰eld study data per Section 4.3. For each of the 10 folds, we average the number of passwords guessed
after making 1, 2, 3, 4, 5, 10, 50, 100, 150, 200, 500, 5000, and 10000 guesses. The average and standard
deviation of this average for the 30 rounds are plotted in Figure 10.
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Figure 10: CDF for cross-validation analysis of human-seeded Markov model-based attack using the PassPoints ï¿‰eld
study database. The % of passwords guessed is the average over 30 rounds; error bars represent standard deviation.

Figure 10 demonstrates our best result; after the ï¿‰rst 3 guesses, on average 10% of passwords on cars and
7% of passwords on pool were correctly guessed. Indeed, for the cars image, 11 participants or 10% of them
chose the same password, which is of course quite bad for security. Figure 10 shows that an online attack is
possible against PassPoints-style graphical passwords, even on systems that implement conservative account
lockout policies.

In general, Figure 10 demonstrates the existance of highly probable passwords other than those captured
by a smaller human-computed data set (as in our human-seeded dictionaries), or the simple click-order
patterns (as in our click-order pattern dictionaries). This result should be seriously considered, as it indicates
an attacker may have even better success given access to better and/or larger human-computed data sets.

5.5 Measuring Differences Between Lab and Field Study Data

Our cross-validation analysis in Section 5.4, which uses the same method as Shs−dep except that it generates
the dictionary using the ï¿‰eld study data, implies the re are differences between the lab and ï¿‰eld study data
sets. To understand these differences further, we perform random sub-sampling experiments on the lab study
to generate Pclstr and Praw (recall Section 5.1.1). We also use Praw to minimize information loss (which
occurs to some extent when clustering is used). Random sub-sampling is similar to cross-validation, except
that the testing set is drawn randomly from the entire set for each trial (as opposed to partitioning the data
set).

We used 10 randomly selected sets of 25 users from the lab study to generate both Praw and Pclstr against
the remaining 8-10 lab study users. For pool, the attack appeared to work similarly to when applied to the
ï¿‰eld study for pool, but not for cars : the average percentage of guessed lab study passwords for pool is 28%
using P 25

raw and 20% using P 25
clstr (about 9% less than the results when applied to the ï¿‰eld study data, as

shown in Table 4), but no passwords were guessed for cars. These results may indicate differences, for some
images, between the passwords selected by the lab study and ï¿‰eld study userï¿‰s ï¿‰nal passwords.
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6 Related Work

A variety of graphical passwords have been proposed to date (see surveys [40, 28]). Here we focus on
click-based graphical password schemes and other work speciï¿‰cally on graphical password guessing attacks.

Click-based graphical password schemes require a user to click on a set of points on one or more presented
background images. Blonder [2] presented the ï¿‰rst such scheme, whereby the user is asked to choose click-
points from a set of predeï¿‰ned tap regions. V-go, a system created by PassLogix [32], uses a set of predeï¿‰ned
objects in the picture, and asks users to click a sequence of these objects. Both Blonderï¿‰s and PassLogixï¿‰s
schemes limit what parts of the image a user may click. Jansen et al. [22] propose a variation designed
for PDAs, which requires users to click an ordered sequence of visible squares imposed on a background
image. The squares are the result of a grid placed over the image, to help the user repeat their click-points
in subsequent logins.

PassPoints [45, 47, 46] allows users to click a sequence of ï¿‰ve points anywhere on an image while allowing
a degree of error tolerance using robust discretization [1] (but see also Chiasson et al. [7]). Various studies
have shown that PassPoints has acceptable usability [46, 45, 47, 8]. VisKey, a commercial system intended
for the Pocket PC, appears similar to PassPoints, but allows the user to choose the number of click-points
and to set the error tolerance. Cued Click-Points (CCP) [9] (see also PCCP [5]) is another variation whereby
a user clicks on a single point on each of ï¿‰ve images; each image (after the ï¿‰rst) is dependent on the previous
click-point, presumably complicating attacks.

A few other studies have examined the security of click-based graphical passwords. One way that an
attacker could predict hot-spots is by using image processing tools to locate areas of interest. Dirik et al. [13]
create and evaluate an automated tool for guessing PassPoints passwords. Their method was tested against a
database of single-session user choices for two images, albeit one may be too simple for meaningful comparison
to other work. With the other image, their method guessed 8% of passwords using an attack dictionary with
232 entries, where their implementation had a 40-bit full password space. In previous work [42], we examine
an automated method (based on a variation of Itti et al.ï¿‰s [21] model of visual attention), guessing an average
of 7% (over 17 images) of our lab study passwords using an attack dictionary with 235 entries compared to a
full pasword space of 243 passwords. Our predictive dictionaries in the present paper are both more effective
(guessing a higher percentage of passwords), and more efficient (smaller in size, requiring fewer guesses). Most
recently, Salehi-Abari et al. [37] combine attacks employing focus-of-attention automated image processing
tools and click-order patterns (compare to Section 4.2), as well as relaxing constraints on click-order patterns
independent of focus-of-attention models, for improved automated attacks.

Another way to examine the security of click-based graphical passwords is to identify click-order patterns
that may be popular choices and can be used to deï¿‰ne small guessing dictionaries; this method allows
attacks that are image independent while not requiring the use of people for human-computation. Click-
order pattern attacks were ï¿‰rst demonstrated by Thorpe et al. [42] and were also shown to optimize human-
seeded attacks. Chiasson et al. [6] further compared the popularity of a set of click-order patterns across
three different schemes: PassPoints, CCP, and PCCP. Salehi-Abari et al. [37] deï¿‰ned additional patterns
and demonstrated their exploitability with both strict and relaxed pattern deï¿‰nitions; an extension of that
paper [30] indicates that some click-order patterns result in a better offline attack than Shs−ind herein, but
the accuracy of Shs−dep herein remains superior. As such, human-seeded and click-order pattern based
attacks are complimentary approaches: human seeded attacks offer better guessing accuracy such that they
are the primary threat in online environments, whereas click-order pattern attacks ï¿‰nd a higher percentage
of passwords in an offline attack.

User choice has been successfully modeled for other types of graphical passwords. A variation of the
method of Section 4.1.2 was used by Davis et al. [11] to determine (for certain sex/race groups) which
sequences of images users were more likely to select for the Faces and Story recognition-based schemes. They
create bi-grams (using a training data set containing 80% of their collected user passwords) as an ordered
pair of two images from at least one user password. The assumption in the bi-gram model is that each
image is dependent upon the image chosen in the previous panel. They use those bi-grams to regenerate
passwords, and created a dictionary ordered by decreasing probability as mainly deï¿‰ned by the bi-gramï¿‰s
frequencies. They further created an ordering of the entire password space, such that those passwords without
representative bi-grams in the training set of passwords are included in the dictionary. They found that 25%
of passwords for Faces could be guessed in 13 guesses, and 25% of passwords for Story could be guessed in
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113 guesses.
Based on cognitive studies, van Oorschot and Thorpe [31] model user choice in ï¿‰Draw-A-Secretï¿‰ (DAS)

pure-recall graphical passwords [23]. The idea of exploiting the structure between click-points is similar to
that of exploiting the small number of DAS strokes [31]. The resulting reduction of the effective password
space is similar, as fewer permutations of the click-points (or strokes in the case of DAS) are possible; for
further discussion, see Thorpe [41].

7 Concluding Remarks

We provide the ï¿‰rst in-depth empirical evaluation of hot-spots in click-based graphical passwords. All of
the 17 images used in our lab study showed hot-spotting, although some much more so than others, and the
relative probabilities of these hot-spots varied quite considerably.

We have presented what are to date the most effective attacks against click-based (or cued-recall) graphical
passwords. Our attacks are quite effective even on an image that, according to an in-lab study, was found to
have the least hot-spotting. On our two different ï¿‰eld study background images, one predictive dictionary
found 20-36% of passwords (depending on the image) using a guessing dictionary with a factor of 1000 fewer
entries than the full 43-bit password space; another found 26-46% with a guessing dictionary similarly smaller
by a factor of 1000 times; and a third found 4-10% in only 100 guesses. Furthermore, combinations of these
dictionaries found 10-17% of passwords using dictionaries that are smaller by a factor of 106 of (i.e., more
than 20 bits smaller than) the full password space, and 6% of passwords within 5 guesses on one of the two
images. Additionally, we found that effective human-seeded dictionaries can be generated using data from
as few as 15 people.

This work introduces and demonstrates the ï¿‰rst application of ï¿‰human-computationï¿‰ to create ï¿‰human-
seededï¿‰ attacks. We conject ure that such human-seeded attacks are generalizable to other non-PassPoints
styles of graphical password (e.g., recognition-based including Passfaces [35] and Story [11]). The primary
difference would be the type of data collected in the human-computation phase; for recognition-based graph-
ical passwords, an attacker might collect which images people more commonly select from a set of presented
images, rather than what parts of an image people more commonly select.

The use of human-computation, though it requires more (non-computer based) work on the attackerï¿‰s
part than purely automated methods, represents a viable attack strategy. Our human-seeded attacks are
based on a human-computed data set collected in a lab study that did not have a long-term component, and
thus could be collected quickly. Such data could be obtained by many means (e.g., friends, paying a small
number of people, as a side effect to playing games [44], or restricting access to a popular website until the
computation task is complete).

Interesting results emerged when we combined our human-seeded attacks with click-order patterns that
exploit dependencies between the hot-spots (i.e., using either the DIAG click-order pattern or the ï¿‰rst-order
Markov model). The ï¿‰rst-order Markov model-based dictionary in general provides a better starting point
for an attack, and the DIAG click-order pattern combined with the human-seeded attack (with independent
cluster probabilities) would provide the best continuation of an attack once the dictionary entries based on
the ï¿‰rst-order Markov model have been exhausted.

Our results for click-order pattern attacks indicate that some of the click-order patterns herein are popular
and can be used to deï¿‰ne a small dictionary. We further demonstrate how they can be used as an optimization
for human-seeded dictionaries. As discussed under Related Work, additional results on patterns can be found
in other papers [42, 37, 6, 30].

Our dictionary based on the ï¿‰rst-order Markov model found an average of 7-10% of passwords within 3
guesses when trained and tested using 10-fold cross-validation on the ï¿‰eld study database. Although this
attack is generated using the same password database (of real passwords in use for a period of time), it
presents an estimate of how well an attacker could perform in a guessing attack when armed with more ideal
training data.

Our results suggest that even the ï¿‰betterï¿‰ background images have exploitable hot-spots in practice and
are vulnerable to the attacks we present herein. Due to one attack herein ï¿‰nding 7-10% of passwords in
3 guesses, it is difficult to recommend the use of PassPoints-style graphical passwords with parameters as
implemented and explored in this and previous papers (e.g., [47]). For these parameters, which yield a full
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password space of 243 elements, our view is that such systems appear problematic in almost any environment.
For other parameter choices, which of course also necessitate re-examining usability, we have not explored
the effectiveness of our attacks nor how the weaknesses discussed herein manifest.
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Appendix A - Subset of Images Used in Lab Study

(a) truck [15] (b) paperclips [17]

(c) bee [43] (d) cdcovers [39]

(e) smarties [34] (f) pcb [18]
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(g) corinthian [16] (h) tea [46]

(i) philadelphia [46] (j) mural [46]

(k) icons [20]

Figure 11: Subset of images used in the lab study. See Figure 1 for cars and pool. The remaining four images used
(citymap-nl, citymap-gr, faces, and toys) are available from the second author; we were not able to obtain permission
to reproduce them herein.
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